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| ABSTRACT 

In this study, we present a numerical approach to solve first-order fuzzy fractional Volterra integro-differential 

equations in two dimensions space, using three different formulations of fuzzy Lagrange polynomials: the fuzzy 

original Lagrange polynomial (FOLP), the fuzzy barycentric Lagrange polynomial (FBLP), and the fuzzy modified 

Lagrange polynomial (FMLP). Comprehensive algorithm is constructed to improve the computational efficiency of 

the proposed method and its effectiveness was tested through numerical application the numerical results 

demonstrate that the three methods can preserve the basic properties of fuzzy solutions, with the FMLP method 

achieving superior performance in terms of accuracy in solving the two-dimensional fuzzy fractional integro-

differential equation based on the lowest absolute error. To verify the effectiveness of the methods, the resulting 

numerical solutions were compared graphically with the exact solution. 
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1. Introduction 

Fuzzy fractional differential and integral equations are a prominent topic in fuzzy mathematics, due to their ability 

to represent complex models with uncertainties. This field has received extensive research attention [1–8], given its 

wide range of applications in various fields such as engineering, operations research, physics, and computer science. 

The importance of this theory lies in its ability to transform practical problems into mathematical formulas that can 

be analyzed within a precise fuzzy fractional framework by transforming them into uncertain systems of a fractional 

nature that can be mathematically treated. Historically, the roots of fractional calculus date back to 1823, when Abel 

first used fractional derivatives to solve an integral equation while studying the tautochrone problem. Integration 

and fractional derivatives have been used within the Riemann–Liouville form based on the Hokuhara differentiation 

framework to address and solve some mathematical problems in a specific field [9- 12]. Fractional calculus is used 

to model many phenomena related to scientific and engineering problems. Given the difficulty of solving most 

fuzzy fractional integro-differential equations analytically, finding approximate solutions using numerical methods is 

increasingly important. Fuzzy fractional integro-differential equations have emerged as a significant topic of study 

in recent scientific literature [13, 14]. Many researchers have focused on studying the properties of these equations 

and finding solutions using a variety of analytical methods. These methods include the fuzzy Laplace transform [15], 

the two-dimensional Legendre wavelet technique [16], the Adomian decomposition method [17], the variational 

iteration method [18], and the domain-appropriate Hilbert kernel technique [19]. The importance of these 

techniques lies in their ability to handle fuzzy data effectively and represent dynamical systems in natural 
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environments characterized by ambiguity and uncertainty. These concepts are of particular importance within the 

theory of fuzzy analysis, as they have broad applications in diverse fields such as, fuzzy control models, quantum 

optics, gauge theory, atmospheric studies, and others [20–23]. In many real-world situations, the information 

associated with problems is always tainted with a degree of uncertainty, which arises from various factors, such as 

measurement errors, missing data, or unclear constraint conditions. Accordingly, it becomes necessary to deal with 

these uncertainties with appropriate methods to improve the results Recently, Lagrange methods have been 

employed to address fractional integro-differential equations [24], with Lagrange's fuzzy interpolation polynomial 

also being utilized for this purpose. In 2024, Ting Ding and Jin Huang [25] applied the Legendre spectral method for 

solving functional integro-differential equations. [26] Lagrangian spectral grouping has been proposed as a 

methodology for treating single weak-kernel fractional integral-differential equations.  This study primarily 

addresses on the following form of equations: 

 

𝐷𝑥
𝜇
𝑢(x, y; 𝛼) = ℎ(𝑥, 𝑦) + ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢(𝑧, 𝑡; 𝛼))

𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡                                                (1.1)   

With the initial condition  u𝛼(0, y) = [u1𝛼(0, y), u2𝛼(0, y)] ,for all  𝛼, 𝜇 ∈ [0,1] ,where (𝑥, 𝑦) ∈ 𝐼 , 𝐼 = [0,1] × [0,1] , 𝐷𝑥
𝜇
 is  

the fuzzy fractional derivative in caputo sense of order 𝜇 , u𝛼(x, y)  is a unknown analytic fuzzy function, and ℎ(𝑥, 𝑦) 

is a continuous fuzzy valued function defined on the domain 𝐼  ,𝑘(𝑥, 𝑦, 𝑧, 𝑡) is a positive continuous real- valued 

kernel function of  𝐼 × 𝐼 , 𝐺(u𝛼(𝑧, 𝑡)) is a continuous fuzzy- valued function that is Lipschitz continuous.  

The structure of the paper is as: Section 1 provides a general introduction, while Section 2 presents the basic 

concepts of calculus and fractional integration. Section 3 is devoted to the analysis of two-dimensional fuzzy 

fractional Volterra differential equations, while Section 4 presents a detailed derivation of the proposed methods. 

Section 5 includes a numerical application, and Section 6 concludes with the most important results and 

conclusions. 

2. Fuzzy Calculus and Fuzzy Fractional Calculus 

In this section, basic symbols, definitions, and main results related to fuzzy fractional calculus are presented. . A 

fuzzy number ũ can be characterized as a fuzzy subset of ℝ. For additional information, please consult references 

[27-33]. 

Definition1. [27] In the parametric form, a fuzzy number ũ is represented by a pair of functions(𝒖𝟏(𝛼), 𝒖𝟐(𝛼)) 

defined for 𝛼 ∈ (0,1],  that satisfy the following properties 

𝑢1(𝛼) is a bounded non-decreasing function, left continuous for each 𝛼 ∈ (0,1], and right continuous at 𝛼 = 0. 

𝑢2(𝛼) is a bounded non-increasing function, left continuous for each 𝛼 ∈ (0,1], and right continuous at 𝛼 = 0. 

𝑢1(𝛼) ≤ 𝑢2(𝛼) on [0,1] . 

Definition1. [27] The class of fuzzy subsets on real axis is denoted by parametric formRF = {ũ: R → [0,1]}. If ũ is 

normal, fuzzy convex, upper semicontinuous and its closure,  𝑐𝑙{x, y ∈ R, ũ(𝑥, 𝑦, 𝛼) > 0} is compact, then RF is said to 

be the space of fuzzy numbers. 

 Definition3. [30] Let  u = (a, b) → RF and  x ∈ (a, b) . We say that u is strongly generalized differentiable at  x , if 

there exists an element  𝑢΄(x) ∈ RF such that: 

The H-differences 𝑢(x + 𝚑) - 𝑢(x), 𝑢(x) - 𝑢(x − 𝚑) exist, ∀ h > 0 sufficiently close to 0, and  lim
h→0+ 

𝑢(x+𝚑)− 𝑢(x)

𝚑
=

𝑢΄(x)   = lim
h→0+ 

𝑢(x)− 𝑢(x−𝚑)

𝚑
 

The H-differences 𝑢(x) - 𝑢(x + 𝚑), 𝑢(x − 𝚑)- (x ) exist, ∀ h > 0 sufficiently close to 0, and lim
h→0+ 

 𝑢(x)−𝑢(x+𝚑) 

𝚑
= 𝑢΄(x)  =

lim
h→0+ 

 𝑢(x−𝚑)−𝑢(x∗) 

𝚑
. 
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Definition4. [33] Let 𝝁 > 𝟎 The Riemann–Liouville partial fractional integral operator  𝑰𝒙
𝝁
 of order 𝝁 ,with respect to  𝒙 

is expressed as 

𝐼𝑥
𝜇
𝑢1𝛼(x, y; 𝛼) =

1

Г(𝜇)
∫ (𝑥 − 𝑧)𝜇−1𝑢1𝛼(𝑧, 𝑦; 𝛼)

𝑥

0
𝑑𝑧,     𝐼𝑥

0𝑢1𝛼(x, y; 𝛼) = 𝑢1𝛼(x, y; 𝛼)      

And 

𝑰𝒙
𝝁
𝒖𝟐𝜶(𝐱, 𝐲;𝜶) =

𝟏

Г(𝝁)
∫ (𝒙 − 𝒛)𝝁−𝟏𝒖𝟐𝜶(𝒛, 𝒚; 𝜶)

𝒙

𝟎
𝒅𝒛  ,     𝑰𝒙

𝟎𝒖𝟐𝜶(𝐱, 𝐲;𝜶) = 𝒖𝟐𝜶(𝐱, 𝐲;𝜶)  

 Definition 5.[33] Let 𝝁 > 𝟎 The partial fractional derivative of 𝑫𝒙
𝝁
 of order 𝝁 with respect to 𝒙 in the Caputo sense is 

defined as: 

𝐷𝑥
𝜇
𝑢1(x, y; 𝛼) =

1

Г(𝑛−𝜇)
∫ (𝑥 − 𝑧)𝑛−𝜇−1u1α

′ (𝑧, 𝑦; 𝛼)
𝑥

0
𝑑𝑧    , 𝑛 − 1 < 𝜇 ≤ 𝑛  ,   𝑛 ∈ 𝑍+  ,    𝑥 > 𝑎  

𝐷𝑥
𝜇
𝑢2(x, y; 𝛼) =

1

Г(𝑛−𝜇)
∫ (𝑥 − 𝑧)𝑛−𝜇−1u2α

′ (𝑧, 𝑦; 𝛼)
𝑥

0
𝑑𝑧   , 𝑛 − 1 < 𝜇 ≤ 𝑛  ,   𝑛 ∈ 𝑍+  ,    𝑥 > 𝑎  

In this paper, we only consider differentiable of order 0 ≤ 𝜇 ≤ 1 for fuzzy-valued function f, such that: 

𝐷𝑥
𝜇
𝑢1(x, y; 𝛼) =

1

Г(1−𝜇)
∫

𝑢1α
′ (𝑧,𝑦;𝛼)

(𝑥−𝑧)𝜇

𝑥

0
𝑑𝑧  

𝑎𝑛𝑑 

𝐷𝑥
𝜇
𝑢2(x, y; 𝛼) =

1

Г(1−𝜇)
∫

𝑢2α
′ (𝑧,𝑦;𝛼)

(𝑥−𝑧)𝜇

𝑥

0
𝑑𝑧  

3. Analysis of Two Dimensional Fuzzy Fractional Volterra IDEs 

In this section, an analysis of two-dimensional fuzzy fractional Volterra integro-differential equations (2DFFVIDEs) 

will be presented, focusing on their differentiability according to Caputo's definition of H as well as Riemannian 

integration. The initial value is assumed to be a fuzzy number, and the solution is a fuzzy function. In this context, 

integration and differentiation are treated as two independent fuzzy operations, requiring careful formulation of the 

problem to ensure their correct handling. 

Now, for all α ∈ (0,1] and 𝑎 ≤ 𝑥 ≤ 𝑏 , 𝑐 ≤ 𝑦 ≤ 𝑑 let the parametric from of the fuzzy 

function ℎ(𝑥, 𝑦) 𝑎𝑛𝑑   𝑢(x, y),as[ℎ(𝑥, 𝑦; 𝛼)] = [ℎ1(𝑥, 𝑦; 𝛼), ℎ2(𝑥, 𝑦; 𝛼)]   and, [𝑢(𝑥, 𝑦;𝛼)] = [𝑢1(𝑥, 𝑦; 𝛼) 

, 𝑢2(𝑥, 𝑦; 𝛼)]  and  𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢(𝑧, 𝑡; 𝛼)) is given by: 

𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢(𝑧, 𝑡; 𝛼)) = 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢1(𝑧, 𝑡; 𝛼), 𝑢2(𝑧, 𝑡; 𝛼) ), in which 

𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢1(𝑧, 𝑡; 𝛼), 𝑢2(𝑧, 𝑡; 𝛼) ) = {
𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢1(𝑧, 𝑡; 𝛼)) , 𝑘(𝑥, 𝑦, 𝑧, 𝑡) ≥ 0 

𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢2(𝑧, 𝑡; 𝛼)), 𝑘(𝑥, 𝑦, 𝑧, 𝑡) < 0
 

 

The (𝑛)-solution of two dimensional fuzzy fractional Volterra integro-differential equations (1.1) is a 

function 𝑦:[𝑎,𝑏]→ RF that has Caputo [(𝑛)− 𝜇]-differentiable and satisfies (1.1). To compute it, we perform the next 

algorithm. 

 

Algorithm 1: To obtain the (𝑛)-solution of the two dimensional FFVIDEs (1.1) are presented as: 

If u(𝑥,y) is Caputo [(1)- 𝜇 ]-differentiable, we convert the eq's(1.1) to the following system: 

𝐷𝑥
𝜇
u1(x, y; 𝛼) = h1(𝑥, 𝑦; 𝛼) + ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢1(𝑧, 𝑡; 𝛼))

𝑥

0

𝑦

0

𝑑𝑧 𝑑𝑡   

𝐷𝑥
𝜇
u2(x, y; 𝛼) = h2(𝑥, 𝑦; 𝛼) + ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(𝑢2(𝑧, 𝑡; 𝛼))

𝑥

0

𝑦

0

𝑑𝑧 𝑑𝑡

                            (3.1) 
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With initial conditions 

                             𝒖(0, y, 𝛼) = [u1(0, y, 𝛼), u2(0, y, 𝛼)]                                                   (3.2) 

Then, do the following steps: 

step1: solve the eq's (3.1) and (3.2) for u1𝛼(x, y), u2𝛼(x, y) 

step2: Ensure that [u1(x, y; 𝛼), u2(x, y; 𝛼)] and [𝐷𝑥
𝜇
u1(x, y;𝛼), 𝐷𝑥

𝜇
u2(x, y; 𝛼)] are valid level sets on [a, b] or on a partial 

interval in [a,b]. 

step4: construct a (1)- differentiable solution u(x,y) whose 𝛼 − 𝑐𝑢𝑡 representation is[u1(x, y; 𝛼), u2(x, y; 𝛼)] . 

 

4. Method solutions 

To Solve Eq. (1.1) by using OLP, MLP and BLP, the derivations of these methods are detailed in this section as 

outlined below. 

4.1 Two-Dimensional Fuzzy Original Lagrange Polynomial Method: 

The Lagrange approach is the best and most reliable method for polynomial interpolation. Let us  u(x, y ; 𝛼) ∈

𝐶𝐹 (𝐴 = [𝑎, 𝑏] × [𝑐, 𝑑]), 𝐶𝐹 (𝐴) represent the two-dimensional space using 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏 and  𝑐 = 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑚 = 𝑑 . Following that (𝑥𝑖 , 𝑦𝑗),0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑚 are (𝑛 +

1)(𝑚 + 1) tensor product interpolation nodes on area 𝐴 = [𝑎, 𝑏] × [𝑐, 𝑑]. The generalized fundamental functions for 

the original fuzzy Lagrange interpolation𝑙𝑛,𝑖(x; α) and 𝑙𝑚𝑗(y; α) are derived from the studies in [35]. The original two-

dimensional fuzzy Lagrange interpolation polynomial takes the following form: 

 

p𝑛,𝑚  (x, y ; 𝛼) =  ∑ ∑ u(𝑥𝑖 , 𝑦𝑗 ; α ) 𝑙𝑛,𝑖
𝑚
𝑗=0 (x ; 𝛼)𝑙𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0    
  

                                                   (4.1) 

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑙𝑛,𝑖(x; α) = ∏
(𝑥−𝑥𝑘)

(𝑥𝑖−𝑥𝑘)

𝑛
𝑘=0
𝑖≠𝑘

  𝑎𝑛𝑑  𝑙𝑚,𝑗(y; α) = ∏
(𝑦−𝑦𝑙)

(𝑦𝑗−𝑦𝑙)

𝑚
𝑙=0
𝑗≠𝑙

  

Now, for 𝑥 = 𝑥𝑖    , 𝑦 = 𝑦𝑗    then:  

p𝑛,𝑚(𝑥𝑖 , 𝑦𝑗 ; α ) = u(𝑥𝑖 , 𝑦𝑗 ; α ) =  𝑢𝑖,𝑗,α           , ∀ 𝑖 = 0,2,… . , 𝑛,      ∀ 𝑗 = 0,2,… . , 𝑚                    (4.2) 

Which that is mean: 

𝑙𝑛,𝑖(𝑥𝑖; α) = {
1        𝑖𝑓𝑥 = 𝑥𝑖                       
0         𝑖𝑓  𝑥 = 𝑥𝑘   , (𝑖 ≠ 𝑘) 

        , 𝑙𝑚,𝑗(𝑦𝑗 ; α) = {
1           𝑖𝑓𝑦 = 𝑦𝑗                      

0         𝑖𝑓  𝑦 = 𝑦𝑙  (𝑗 ≠ 𝑙) 
          (4.3)  

And the dervitive Eq.(4.1) of order 𝜇 with respect to x  we obtain: 

𝐷𝑥
𝜇
p𝑛,𝑚  (x, y ; 𝛼) =  ∑ ∑ 𝑢𝑖,𝑗,α 𝑙𝑛,𝑖

𝜇
′𝑚

𝑗=0 (x ; 𝛼)𝑙𝑚,𝑗(y ; 𝛼)𝑛
𝑖=0    

  
                                                         (4.4) 

In order to solve 2-dimensional FFVIDE using fuzzy Original Lagrange polynomial, we substituting Eq. (4.1)and Eq. 

(4.4)in Eq. (1.1), to get: 

∑ ∑ 𝑢𝑖,𝑗,α 𝑙𝑛,𝑖
𝜇

′𝑚
𝑗=0 (x ; 𝛼) 𝑙𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0 =            ℎ(𝑥, 𝑦; 𝛼) + ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(∑ ∑ 𝑢𝑖,𝑗,α l𝑛,𝑖
𝑚
𝑗=0 (z ; 𝛼) l𝑚,𝑗(t ; 𝛼)𝑛

𝑖=0 )
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡                     

(4.5) 

According to the definition of Caputo's derivative, it is expressed as: 

𝑙𝑛,𝑖
𝜇

′(x; α) =
1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
𝑙′𝑛,𝑖(z ; 𝛼)𝑑𝑧 =

1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
(∏

(𝑧−𝑥𝑘)

(𝑥𝑖−𝑥𝑘)

𝑛
𝑘=0
𝑘≠𝑖

)
′

𝑑𝑧              (4.6) 

 Therefore, after collecting the coefficients of 𝑢𝑘,𝑙 , 𝑘 = 0,1,… . , 𝑛  ,   𝑙 = 0,1,… ,𝑚 ,   we obtain: 
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ℎ(𝑥, 𝑦; 𝛼) = 𝑢0,0,α (𝑙𝑛,0
𝜇

′(x ; 𝛼)𝑙𝑚,0(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (l𝑛,0(z ; 𝛼) l𝑚,0(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )    

+𝑢1,1,α (𝑙𝑛,1
𝜇

′(x ; 𝛼)𝑙𝑚,1(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (l𝑛,1(z ; 𝛼) l𝑚,1(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )     

+𝑢2,2,α (𝑙𝑛,2
𝜇

′(x ; 𝛼)𝑙𝑚,2(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (l𝑛,2(z ; 𝛼) l𝑚,2(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )    

+𝑢𝑛,𝑚,α (𝑙𝑛,𝑛
𝜇

′(x ; 𝛼)𝑙𝑚,𝑚(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (l𝑛,𝑛(z ; 𝛼) l𝑚,𝑚(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )  

Putting 𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑗 , for 𝑖 = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚 a system of n equations is formed as: 

                                                                𝐷𝑈⃑⃑ = 𝐶                                                                            (4. 7) 

When 

𝐷 = 𝑑𝑖,𝑗   ,     𝐶 = 𝐶𝑖  𝑎𝑛𝑑  𝑈⃑⃑ = [𝑢1,1,α, 𝑢2,2,α, . . , 𝑢𝑛,𝑚,α]
𝑇   

  

with 

𝐶𝑖 = ℎ(𝑥𝑖 , 𝑦𝑗 ; 𝛼) − 𝑢0,0,α(𝑙𝑛,1
𝜇

′(𝑥𝑖  ; 𝛼)𝑙𝑚,1(𝑦𝑗  ; 𝛼) −                                                                       (4.8) 

∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 ( l𝑛,1(z ; 𝛼) l𝑚,1(t ; 𝛼))
𝑥𝑖

0

𝑦𝑖

0

𝑑𝑧 𝑑𝑡 

And 

𝑑𝑖,𝑗 = 𝑙𝑛,𝑖
𝜇

′(𝑥𝑖  ; 𝛼)𝑙𝑚,𝑗(𝑦𝑗  ; 𝛼) − ∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 (l𝑛,𝑖(z ; 𝛼) l𝑚,𝑗(t ; 𝛼))
𝑥𝑖

0

𝑦𝑗

0
𝑑𝑧 𝑑𝑡                     (4.9) 

for 𝑖 = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚 

 

4.2 Two-Dimensional Fuzzy Barycentric Lagrange Polynomial Method: 

The fuzzy valued function p𝑛,𝑚  (x, y ; 𝛼) can be represented using the two-dimensional fuzzy Barycentric Lagrange 

polynomial as: 

 

p𝑛,𝑚  (x, y ; 𝛼) =  ∑ ∑ 𝑢𝑖,𝑗,α 𝐵𝑛,𝑖
𝑚
𝑗=0 (x ; 𝛼)𝐵𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0    
  

                                                          (4.10) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡    𝐵𝑛,𝑖(x; α) =

𝑤𝑖
𝑥−𝑤𝑖

∑
𝑤𝑘

𝑥−𝑤𝑘
 𝑛

𝑘=0 

        , 𝐵𝑚,𝑗(y; α) =

𝑣𝑗
𝑦−𝑣𝑗

∑
𝑣𝑙

𝑦−𝑣𝑙
 𝑚

𝑙=0

                                                 (4.11) 

Where 

          𝑤𝑖 =
1

∏ (𝑥𝑖−𝑥𝑘)𝑛
𝑖≠𝑘  

,         𝑣𝑗 =
1

∏ (𝑦𝑗−𝑦𝑙)
𝑚
𝑗≠𝑙  

                                                                      (4.12) 

And the dervitive Eq.(4.10) of order 𝜇 with respect to x  we obtain: 

𝐷𝑥
𝜇
p𝑛,𝑚(x, y ; 𝛼) = ∑ ∑ 𝑢𝑖,𝑗,α 𝐵𝑛,𝑖

𝜇
′𝑚

𝑗=0 (x ; 𝛼) B𝑚,𝑗(y ; 𝛼)𝑛
𝑖=0    

  
                                                      (4.13)  

To solve two-dimensional FFVIDE using fuzzy Barycentric Lagrange polynomial, we substitute Eq. (4.10)and Eq. 

(4.13)in Eq. (1.1), to get: 

∑ ∑ 𝑢𝑖,𝑗,α 𝐵𝑛,𝑖
𝜇

′𝑚
𝑗=0 (x ; 𝛼) 𝐵𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0 = ℎ(𝑥, 𝑦; 𝛼) + ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺(∑ ∑ 𝑢𝑖,𝑗,α B𝑛,𝑖
𝑚
𝑗=0 (z ; 𝛼) B𝑚,𝑗(t ; 𝛼)𝑛

𝑖=0 )
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡                                

(4.14) 

According to the definition of Caputo's derivative, it is expressed as: 
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𝐵𝑛,𝑖
𝜇

′(x; α) =
1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
B′𝑛,𝑖(z ; 𝛼)𝑑𝑧 =

1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
(

𝑤𝑖
𝑧−𝑤𝑖

∑
𝑤𝑘

𝑧−𝑤𝑘
 𝑛

𝑘=0 

)′𝑑𝑧                (4.15) 

Therefore, after collecting the coefficients of 𝑢𝑘,𝑙 , 𝑘 = 0,2,… . , 𝑛  ,   𝑙 = 0,1,… ,𝑚 ,   we obtain: 

ℎ(𝑥, 𝑦; 𝛼) = 𝑢0,0,α (𝐵𝑛,𝑜
𝜇

′(x ; 𝛼)𝐵𝑚,0(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (B𝑛,0(z ; 𝛼) B𝑚,0(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )  

+𝑢1,1,α (𝐵𝑛,1
𝜇

′(x ; 𝛼)𝐵𝑚,1(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (B𝑛,1(z ; 𝛼) B𝑚,1(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )  

𝑢2,2,α (𝐵𝑛,2
𝜇

′(x ; 𝛼)𝐵𝑚,2(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (B𝑛,2(z ; 𝛼) B𝑚,2(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )    

𝑢𝑛,𝑚,α (𝐵𝑛,𝑛
𝜇

′(x ; 𝛼)𝐵𝑚,𝑚(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (B𝑛,𝑛(z ; 𝛼) B𝑚,𝑚(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )  

Putting 𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑗 , for 𝑖 = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚, a system of n equations is formed as: 

                                                                𝐷𝑈⃑⃑ = 𝐶                                                                            (4.16) 

When 

𝐷 = 𝑑𝑖,𝑗   ,     𝐶 = 𝐶𝑖  𝑎𝑛𝑑  𝑈⃑⃑ = [𝑢1,1,α, 𝑢2,2,α, . . , 𝑢𝑛,𝑚,α]
𝑇   

  

with 

 𝐶𝑖 = ℎ(𝑥𝑖 , 𝑦𝑗 ; 𝛼) − 𝑢0,0,α(𝐵𝑛,1
𝜇

′(𝑥𝑖  ; 𝛼)𝐵𝑚,1(𝑦𝑗  ; 𝛼) −                                                                                  

                              ∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 ( B𝑛,1(z ; 𝛼) B𝑚,1(t ; 𝛼))
𝑥𝑖

0

𝑦𝑖

0
𝑑𝑧 𝑑𝑡                                            (4.17) 

 

And 

𝑑𝑖,𝑗 = 𝐵𝑛,𝑖
𝜇

′(𝑥𝑖  ; 𝛼)𝐵𝑚,𝑗(𝑦𝑗  ; 𝛼) − ∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 (B𝑛,𝑖(z ; 𝛼) B𝑚,𝑗(t ; 𝛼))
𝑥𝑖

0

𝑦𝑗

0
𝑑𝑧 𝑑𝑡                 (4.18) 

for 𝑖 = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚 

 

4.3 Two-Dimensional Fuzzy Modified Lagrange Polynomial Method: 

 The form of the two-dimensional fuzzy modified Lagrange interpolation polynomial is 

p𝑛,𝑚  (x, y ; 𝛼) =  ∑ ∑ u(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 𝑤𝑖(𝑥; α)𝑤𝑗(𝑦; α)M𝑛,𝑖
𝑚
𝑗=0 (x ; 𝛼) M𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0    
  

                        (4.19)   

Such that: 

M𝑛,𝑖(x; α ) = 𝑙(𝑥; α)
1

∑ 𝑥−𝑥𝑖
𝑛
𝑖=0

 , 𝑤ℎ𝑒𝑟𝑒   𝑙(𝑥; α) = ∏ (𝑥 − 𝑥𝑘)  𝑎𝑛𝑑   𝑛
𝑘=0
𝑖≠𝑘

𝑤𝑖(𝑥;α) =
1

∏ (𝑥𝑖−𝑥𝑘)𝑛
𝑖≠𝑘

      (4.20)        

M𝑚,𝑗(y; α ) = 𝑙(𝑦; α)
1

∑ 𝑦−𝑦𝑗
𝑚
𝑗=0

 , 𝑤ℎ𝑒𝑟𝑒    𝑙(𝑦; α) = ∏ (𝑦 − 𝑦𝑙)
𝑚
𝑙=0
𝑗≠𝑙

    𝑎𝑛𝑑  𝑤𝑗(𝑦; α) =
1

∏ (𝑦𝑗−𝑦𝑙)
𝑚
𝑗≠𝑙

    (4.21)    

And the dervitive Eq.(4.19)  of order 𝜇 with respect to x  we obtain: 

𝐷𝑥
𝜇
p𝑛,𝑚(x, y ; 𝛼) =  ∑ ∑ u(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 𝑤𝑖(𝑥; α)𝑤𝑗(𝑦;α) 𝑚𝑛,𝑖

𝜇
′𝑚

𝑗=0 (x ; 𝛼) M𝑚,𝑗(y ; 𝛼)𝑛
𝑖=0  

  
                    (4.22)     

To solve the two-dimensional FFVIDE using fuzzy modified Lagrange polynomial, we substitute Eq. (4.19) and Eq. 

(4.22) in Eq. (1.1), to get: 

∑ ∑ 𝑢𝑖,𝑗,α 𝑤𝑖(𝑥; α)𝑤𝑗(𝑦; α) M𝑛,𝑖
𝜇

′𝑚
𝑗=0 (x ; 𝛼) M𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0 = ℎ(𝑥, 𝑦; 𝛼) +                           

∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺( ∑ ∑ 𝑢𝑖,𝑗,α 𝑤𝑖(𝑥; α)𝑤𝑗(𝑦; α)M𝑛,𝑖
𝑚
𝑗=0 (x ; 𝛼) M𝑚,𝑗(y ; 𝛼)𝑛

𝑖=0 )
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡              (4.23) 
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According to the definition of Caputo's derivative, it is expressed as: 

M𝑛,𝑖
𝜇

′(x; α) =
1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
M′𝑛,𝑖(z ; 𝛼)𝑑𝑧 =

1

Г(1−𝜇)
∫ (𝑥 − 𝑧)−𝜇𝑥

0
(𝑙(𝑧; 𝛼)

1

∑ 𝑧−𝑥𝑖
n
𝑖=0

)′𝑑𝑧          (4.24) 

Therefore, after collecting the coefficients of 𝑢𝑘,𝑙 , 𝑘 = 0,2,… . , 𝑛  ,   𝑙 = 0,1,… ,𝑚 ,   we obtain: 

ℎ(𝑥, 𝑦; 𝛼) =  𝑤0(𝑥; α)𝑤0(𝑦; α)𝑢0,0,α (M𝑛,0
𝜇

′(x ; 𝛼)M𝑚,0(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (M𝑛,0(z ; 𝛼) M𝑚,0(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡  )  

+𝑤1(𝑥; α)𝑤1(𝑦; α)𝑢1,1,α (M𝑛,1
𝜇

′(x ; 𝛼)M𝑚,1(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (M𝑛,1(z ; 𝛼) M𝑚,1(t ; 𝛼))
𝑥

0

𝑦

0

𝑑𝑧 𝑑𝑡  ) 

+ 𝑤2(𝑥; α)𝑤2(𝑦;α)𝑢2,2,α (𝑀𝑛,2
𝜇

′(x ; 𝛼)M𝑚,2(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (M𝑛,2(z ; 𝛼) M𝑚,2(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡)  

+ 𝑤𝑛(𝑥; α)𝑤𝑚(𝑦; α)𝑢𝑛,𝑚,α (𝑀𝑛,𝑛
𝜇

′(x ; 𝛼)M𝑚,𝑚(y ; 𝛼) − ∫ ∫ 𝑘(𝑥, 𝑦, 𝑧, 𝑡)𝐺 (M𝑛,𝑛(z ; 𝛼)M𝑚,𝑚(t ; 𝛼))
𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡)    

Putting𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑗, for = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚 , a system of n equations is formed as: 

                                                                𝐷𝑈⃑⃑ = 𝐶                                                                            (4.25) 

When 

𝐷 = 𝑑𝑖,𝑗   ,     𝐶 = 𝐶𝑖  𝑎𝑛𝑑  𝑈⃑⃑ = [𝑢1,1,α, 𝑢2,2,α, . . , 𝑢𝑛,𝑚,α]
𝑇   

with 

 𝐶𝑖 =           ℎ(𝑥𝑖 , 𝑦𝑗 ; 𝛼) − 𝑤0(𝑥𝑖; α)𝑤0(𝑦𝑗 ; α)𝑢0,0,α (𝑀𝑛,1
𝜇

′(𝑥𝑖  ; 𝛼)M𝑚,1(𝑦𝑗  ; 𝛼) −

 ∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 (M𝑛,1(z ; 𝛼) M𝑚,1(t ; 𝛼))
𝑥𝑖

0

𝑦𝑗

0
𝑑𝑧 𝑑𝑡)                                                         (4.26)   

And  

𝑑𝑖,𝑗 =  𝑤𝑖(𝑥𝑖; α)𝑤𝑗(𝑦𝑗 ; α) (𝑀𝑛,𝑖
𝜇

′(𝑥𝑖  ; 𝛼)M𝑚,𝑗(𝑦𝑗 ; 𝛼) − ∫ ∫ 𝑘(𝑥𝑖 , 𝑦𝑗 , 𝑧, 𝑡)𝐺 (M𝑛,𝑖(z ; 𝛼) M𝑚,𝑗(t ; 𝛼))
𝑥𝑖

0

𝑦𝑗

0
𝑑𝑧 𝑑𝑡)       

for 𝑖 = 0,2,… . , 𝑛  ,   𝑗 = 0,1,… ,𝑚                                                                                                 (4.27) 

 

 

General Algorithm for the Proposed Methods 

To compute the numerical solutions of the two-dimensional fuzzy fractional Volterra integro-differential equation 

using(FOLP),(FBLP), and(FMLP) methods, the following structured steps is employed: 

Step1: Specify the step sizes as:  ℎ =
𝑏−𝑎

𝑛
  , 𝑧 =

𝑑−𝑐

𝑚
    , 𝑛 ∈ 𝑁 ,𝑚 ∈ 𝑀,𝑢(0, y; 𝛼) = [u1(0, y; 𝛼), u2(0, y; 𝛼)]  

Step 2: Construct a uniform grid over the domain [𝑎, 𝑏] × [𝑐, 𝑑] as: x𝑖 = 𝑎 + 𝑖ℎ  with x0 = 𝑎, x𝑛 = 𝑏  , 𝑖 = 0, … . , 𝑛 

 & 𝑝𝑢𝑡   y𝑗 = 𝑐 + 𝑗𝑧  with  y0 = 𝑐, y𝑚 = 𝑑  , 𝑗 = 0,… . ,𝑚 

Step 3: According to steps (1) and (2).wefind the value of the linear system 𝐷𝑈⃑⃑ = 𝐶  and consider the following 

cases: 

 

  Case (1): Use Equations (4.8) and (4.9) associated with original Lagrange polynomial.  

  Case (2): Use Equations (4.17) and (4.18) associated with the barycentric Lagrange polynomial.  

  Case (2): Use Equations (4.26) and (4.27) associated with the modified Lagrange polynomial.  

 (Note that in all cases, the exact values of the fractional derivative and fractional integral are used according to 

Caputo's definition, which are calculated using MATLAB). 

Step 4: Solve the system (𝐷𝑈⃑⃑ = 𝐶 ) based on what was obtained in step 3 using Gauss's elimination method. 

 

5. Numerical Example 

In this section, we present a numerical example to illustrate the application of the methods discussed previously in 

solving a first-order two-dimensional fuzzy fractional Volterra integro-differentials Equation. The exact solution is 

known and serves as a reference to validate the accuracy of the numerical results obtained using our approaches. 

MATLAB version 7.6 was utilized to solve this example. The numerical accuracy is determined by the following 

errors: 
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𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  = |𝑢1(𝑥𝑖 , 𝑦𝑗 ; α ) − 𝑝𝑛,𝑚,1(𝑥𝑖 , 𝑦𝑗 ; α )|,  𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  = |𝑢2(𝑥𝑖 , 𝑦𝑗 ; α ) − 𝑝𝑛,𝑚,2(𝑥𝑖 , 𝑦𝑗 ; α )|, 

𝐸1(𝑥𝑛 , 𝑦𝑚; 𝛼) =  𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)0≤𝑥,𝑦≤1
𝑚𝑎𝑥    , 𝐸2(𝑥𝑛, 𝑦𝑚; 𝛼) =  𝑒2(𝑥𝑖, 𝑦𝑗 ; 𝛼)0≤𝑥,𝑦≤1

𝑚𝑎𝑥  , 

  Example: Consider two-dimensional fuzzy fractional Volterra- integro-differential equations. 

 

𝐷𝑥
0.75𝑢(x, y; 𝛼) = ℎ(𝑥, 𝑦; α) + ∫ ∫ (𝑦 + 𝑡)𝐺(𝑢(𝑧, 𝑡; 𝛼))

𝑥

0

𝑦

0
𝑑𝑧 𝑑𝑡   

         𝑢(0, y;𝛼) = [u1(0, y; 𝛼), u2(0, y; 𝛼)] = [α2 + α ,4 − α4].  

𝑤ℎ𝑒𝑟𝑒 

ℎ1(𝑥, 𝑦; α) = (α2 + α)
6.4

Г(0.25)
𝑦𝑥

5

4 − (α2 + α)
5
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ℎ2(𝑥, 𝑦; α) = (4 − α4)
6.4

Г(0.25)
𝑦𝑥

5

4 − (4 − α4)
5

18
𝑥4𝑦4  

And the exact solution 𝑢(x, y; 𝛼) = [𝑢1(x, y; 𝛼) , 𝑢2(x, y; 𝛼)] = [α2 + α, 4 − α4]𝑥2𝑦 

Tables 1 and 3 show the numerical comparison of the absolute errors obtained using the OLP, BLP, and MLP 

methods for N=M=2 and 𝛼 = 0.2, 0.8 respectively. Table 2 and 4 contains the maximum errors values for the same 

methods for N=M= 4, 5, and 8 and 𝛼 = 0.2,0.8 respectively. The numerical solutions for the two functions are 

plotted and compared to the exact solutions in Figure 1. 

 

Table1. Comparison of Absolute Error in Example (1) using OLP, BLP, and MLP methods with N=M=2. 𝜶 =
𝟎. 𝟐 

  (x, y)                   OLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼)      

        BLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼) , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

       MLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼) , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

(0.1,0.1)   0.000228   ,   0.0037980   0.0023760 ,  0.0039580   0.0002395 ,  0.0039900 

(0.4,0.2)   0.003648   ,   0.0607757   0.0038016 ,  0.0633347   0.0038323 ,  0.0638465 

(0.7,0.3)   0.014364   ,   0.2393042   0.0149688,  0.24938020   0.0150897,    0.2513958 

(0.2,0.4)   0.007296   ,   0.1215514   0.0076032 ,   0.1266693   0.0076646 ,   0.1276922 

(0.5,0.5)   0.028500   ,   0.4748100   0.0297000 ,   0.4948020   0.0299400 ,   0.4988004 

(0.8,0.6)   0.065664   ,   1.0940534   0.0684288 ,   1.1401189   0.0689822 ,   1.1493328 

(0.3,0.7)   0.033516   ,   0.5580437   0.0349272 ,   0.5815402   0.0352094 ,   0.5862395 

(0.6,0.8)   0.087552   ,   1.4592547   0.0912384 ,   1.5206970   0.0919757 ,   1.5329855 

(0.9,0.9)   0.166212   ,   2.7691694   0.1732104 ,   2.8857660   0.1745901 ,   2.9080853 

(1.0,1.0)   0.228000   ,   3.7984800   0.2376000 ,   3.9584160   0.2395200 ,   3.9904032 

 

Table 2. Maximum Error of Example (1) using OLP, BLP, and MLP methods with N=M=4, 5, 8 , 𝜶 = 𝟎. 𝟐. 

N,M                   OLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼)      

        BLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

       MLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

N=M=4 3.2477e-16,1.2932e-10 3.2477e-16,1.2932e-10 1.2932e-10,  1.2932e-10 

N=M=5 5.1000e-16, 5.1000e-16 5.1000e-16, 5.1000e-16 5.1000e-16,  5.1000e-16 

N=M=8 4.1440e-15 ,4.1440e-15 2.6173e-15, 2.6173e-15 2.6173e-15, 2.6173e-15 

 

Table 3. Comparison of Absolute Error in Example (1) using OLP, BLP, and MLP methods with N=M=2. 𝜶 =
𝟎. 𝟖 
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  (x, y)                   OLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼)      

        BLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼) , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

       MLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼) , 𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

(0.1,0.1)   0.001212   ,   0.000208   0.000936 ,   0.0003680   0.001201 ,  0.000400 

(0.4,0.2)   0.042432   ,   0.054117   0.042278 ,  0.051558   0.042248 ,  0.051046 

(0.7,0.3)   0.197316  ,   0.288485   0.196711,  0.278409   0.196590,    0.276393 

(0.2,0.4)   0.015744   ,   0.064105   0.015437 ,   0.069223   0.015375 ,   0.070246 

(0.5,0.5)   0.151500   ,   0.026010   0.150300 ,   0.046000   0.150060 ,   0.050000 

(0.8,0.6)   0.487296   ,   0.284660   0.484531 ,   0.238595   0.483978,    0.229381 

(0.3,0.7)   0.057204   ,   0.331849   0.055793 ,   0.355345   0.055511 ,   0.360044 

(0.6,0.8)   0.327168   ,   0.425220   0.323482 ,   0.486662   0.322744 ,   0.498950 

(0.9,0.9)   0.883548  ,   0.151768   0.876550 ,   0.268364   0.875170 ,   0.290684 

(1.0,1.0)   1.212000   ,   0.208080   1.202400 ,   0.368016   1.200480 ,   0.400003 

 

Table 4. Maximum Error of Example (1) using OLP, BLP, and MLP methods with N=M=4, 5 , 8,  𝜶 = 𝟎. 𝟖. 

N,M                   OLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼)      

        BLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)  𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

       MLP 

𝑒1(𝑥𝑖 , 𝑦𝑗 ; 𝛼)𝑒2(𝑥𝑖 , 𝑦𝑗 ; 𝛼) 

N=M=4 0.0239  ,0.0378 0.0085,   0.0220 0.0266 ,  0.0112 

N=M=5 0.0201 ,0.0296 0.0093 , 0.0294 0.0250, 0.0102 

N=M=8 0.0298 ,0.0352 0.0113,0.0305 0.0419,0.0113 

    

 

Figure1. Numerical and Exact Solution for 𝐮𝟏(𝐱, 𝐲;𝜶), 𝐮𝟐(𝐱, 𝐲; 𝜶) using OLP, BLP, and MLP Methods with 𝑵 =

𝑴 = 𝟏𝟎 and 𝛂 = 𝟎. 𝟖. 

 

 

6. Conclusions 

In this work, three types of two-dimensional fuzzy Lagrange polynomials are used to solve  two-dimensional first–

order fractional volterra integro differential equations: fuzzy original Lagrange polynomials, fuzzy barycentric 

Lagrange polynomial , and fuzzy modified Lagrange polynomial . Based on numerical results obtained from 

illustrative example, the following conclusions can be drawn: 
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- The results on absolute errors obtained using MATLAB confirm the effectiveness and reliability of the proposed 

approach. 

- The modified Lagrange polynomial achieves a higher level of accuracy compared to other types of polynomials 

used. 

- As the number of nodes (N, M) increases, the error decreases for all methods used. 

- The method can be generalized to apply to nonlinear cases of fuzzy fractional Volterra equations. 

- Its application can also be extended to solve n-order two-dimensional fuzzy FFVIDE equations. 

Acknowledgments: The authors would like to thank Mustansiriyah University (WWW.uomustansiriyah.edu.iq) 

Baghdad –Iraq for its support in the present work. 
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